Untitled
Welcome to 401, a website with math and sanity
Please contact me via e-mail if there is something questionable or misspelled
kraehen@disroot.org
Neocities does not send any notification
Proof of $[[M'\to M\to M''\to 0]]\Rarr[[M'\otimes N\to M\otimes N\to M''\otimes N\to 0]]$
$\ast$ definition of cokernels:
$$
\big[M'\to M\to M''\to 0\big]
\text{ exact}
\newline
\Updownarrow\newline
\forall P:
\big((M'\to M\xrightarrow{f} N)=0
\big)
\Rightarrow
\big(f=(M\to M''\to N)
\big)\newline
\Updownarrow\newline
\big[0\to\mathrm{Hom}(M'',N)\to\mathrm{Hom}(M,N)\to \mathrm{Hom}(M',N)\big]
\text{ exact}
$$
$\ast$ bilinear property: for given $f:M\otimes N\to P$
fix $x\in M$, then $f(x,\ast):y\mapsto f(x,y)\in\mathrm{Hom}(N,P)$
$\Large\leadsto$
$$
%\begin{align*}
M'\to M\to M''\to 0 \text{ exact}\\
\big\Downarrow\\
0\to\mathrm{Hom}(M',\mathrm{Hom}(N,P))\to\mathrm{Hom}(M,\mathrm{Hom}(N,P))\to\mathrm{Hom}(M'',\mathrm{Hom}(N,P))\\
\text{exact},\,\forall N,P\\
\big\updownarrow\\
0\to\mathrm{Hom}(M'\otimes N,P)\to\mathrm{Hom}(M\otimes N,P)\to\mathrm{Hom}(M''\otimes N,P)\\
\text{exact},\,\forall P\\
\big\updownarrow\\
M'\otimes N\to M\otimes N\to M''\otimes N\to 0 \text{ exact}
%\end{align*}
$$
Direct sum $\sum_{i\in I}M_i$ and direct product $\prod_{i\in I}M_i$ are therefore the same if the index set $I$ is finite, but not otherwise, in general.
[Chapter 2 Modules :: direct sum and direct product]
You can also reach the same point if you define direct sum and direct product as direct limit $\varinjlim$ and inverse limit $\varprojlim$ (i.e.)
info
- not good at dealing natural language when writing in mathematics
- updown.city is also my website
- willing to solve your math problem if you failed to find answer from web
- elitism is strictly forbidden for me。
- too lazy to make a button for this website
- vintage speckles